Decimal Versus Sexagesimal Based Zmanim Location Errors

Decimal Analog Clock
Converting from one number system to another can be tricky. What time would 6:19 am/pm on this decimal based analog clock be on a regular duodecimal (12 based) clock? See the end of the article for the answer.
There are two different ways to reference latitude and longitude. One uses a sexagesimal (60 based) system of degrees indicated by a ° symbol, minutes indicated by a ' and seconds indicated by ". Think 60 minutes in an hour, 60 seconds in a minute and apply it to latitude numbers. The other system uses the more familiar decimal based format. For example The main BMG beis hamedrash is located at latitude 40.096, longitude -74.222 in degree/decimal. In degrees, minutes and seconds this would be latitude 40° 5′ 46″ N, longitude 74° 13′ 19″ W.

I was recently shown a zmanim calendar that seemed to be slightly inaccurate. Researching the issue showed that the intention was to generate the calendar for the location XX° 46′ N XX° 15′ W (latitude and longitude degrees are masked), but was mistakenly calculated for XX.46° -XX.15°. This confusion of the sexagesimal based system with the decimal based system is not uncommon. The discrepancy in sunrise and sunset in the calendar versus what it should have been was about 80 seconds in the summer. If someone were to confuse XX° 9′ with XX.9° (for both latitude and longitude) you have a much more significant relative error of 0.75°. The impact of this type of mistake is mostly caused by longitude, but latitude changes impact zmanim calculations as well. This 0.75° mistake can result in a zmanim discrepancy of up to five and a half minutes at the latitude of Lakewood, NJ. As confirmed by Dr. Noson Yanofsky, this scenario has the most extreme error, while 10′ confused with 0.10° has the least significant error of 0.066°.

An interesting variant of such a mistake is calculating a zman for a depression angle (how far the sun is below the horizon) that is based on degrees and minutes using degree/decimal. An example is mistakenly calculating tzais of 7° 5′ , or 7.083° as 7.5°. See Hazmanim Bahalacha vol II p. 520 footnote 21 for a case where this mistake happened. It should be noted that many are of the opinion that a depression angle of 7.5° is the proper time of tzais. This was used in the first ever known printed calendar calculated based on depression angles. It was published in תקכ״ו / 1766 by Raphael Levi Hannover. See Hazmanim Bahalacha p. 524 for a picture of the luach and a list of other calendars that calculate tzais as 7.5°.

To answer the question in the image caption above, the time in a regular 12 hour / duodecimal based clock would be 7:40. With 10 hours instead of 12, each decimal hour on this clock is 72 minutes of regular time. Therefore 6 hours = 432 minutes. Add ~19/50 decimal minutes that are equivalent to ~28/72 regular clock minutes and you end up with 460 minutes after noon/midnight, or about 7:40 🙂.

ZIP Codes and Zmanim – A Practical Approach

99557 ZIP code area (the largest in the USA)
99557 ZIP code area (the largest in the USA)
As mentioned in the ZIP Codes and Zmanim – Use With Care article, using ZIP codes to geolocate your position for zmanim can be problematic when the zip code is large. With large zip codes, zmanim on the west side of the zip code can be quite a bit later than zmanim on the east side of the zip. Recently, Lazer Guttman created an SMS based zmanim service at (914) 409-9394 that provides a warning when zmanim are requested for large zip codes. This approach is probably the best that can be done. I would recommend that any zmanim service that is zip code based (and does not have a map to allow zeroing in to a precise location), use this data to to provide a warning whenever the zip codes is wider than 0.5° of longitude. A degree of longitude spans 4 minutes (regardless of the latitude), so half of a zip code with half of a degree would span 2 minutes (one minute east or west of the center). It should be noted that Canadian postal codes are much smaller than zip codes (usually covering one side of a city block), and most likely do not face the same issue. A spreadsheet listing all zip codes with the maximum longitude and latitude distances (in degrees), was generated by Avraham David Gelbfish from OpenDataDE that is based on US Census data. His Python source code is below.

import json
import csv
​
jsonfile = open("tl_2019_us_zcta510/out2.geojson")
zipcodes = json.load(jsonfile)
​
def getop(geolist, operation, longitude = None, latitude = None):
    if isinstance(geolist[0], list):
        answers = [getop(geo, operation) for geo in geolist]
        for answer in answers:
            lat, lng = answer
            if latitude is None:
                latitude = lat
            if longitude is None:
                longitude = lng
            latitude = operation(latitude, lat)
            longitude = operation(longitude, lng)
        return latitude, longitude
    else:
        return geolist
​
with open("out2.csv", "w") as csvfile:
    zwriter = csv.writer(csvfile)
    zwriter.writerow(["Zip", "Latitude max distance", "Longitude max distance"])
    for zipcode in zipcodes["features"]:
        zip = zipcode["properties"]["ZCTA5CE10"]
        geometry = zipcode["geometry"]["coordinates"]
        maxlat, maxlng = getop(geometry, lambda x, y: x if x > y else y)
        minlat, minlng = getop(geometry, lambda x, y: x if x < y else y)
        dlat = abs(maxlat - minlat)
        dlng = abs(maxlng - minlng)
        zwriter.writerow([zip, dlat, dlng])

Inflight Zmanim Calculations – Why So Complex?

Airline ZmanimDetermining zmanim times while on an airline flight is rather complex compared to calculating it for a fixed location. Some of the complexity involves:

  • Where you are currently located
  • Your Speed
  • Direction of travel / flightpath

The above 3 variables impact the calculation of what the zmanim are in your current location and where you will likely be when various zmanim are met.

Surprisingly, the hardest part is figuring out your current location. The shortest point between 2 points on the globe is the great circle route. Though it is the shortest path, airliners rarely fly this way. To take advantage of prevailing winds such as the Gulf Stream, or to avoid bad weather, airlines often fly much longer routes and as a passenger you often do not know exactly where you are.
Yes, the airline shows you a nice location map, but getting your exact coordinates from the map is not something that they usually supply. From a practical perspective, many people on domestic and short international flights will manage to figure out davening times by themselves. As a general rule of thumb, it is time for Shacharis when the sun rises and time for Maariv when it gets dark. Please keep in mind that most poskim are of the opinion that we use zmanim at sea level elevation, or ground level, and not the 37,000 foot elevation of the flight. This elevation results in a difference of approximately 20 minutes in sunrise and sunset times. Not sure when Mincha time is? Wait until shortly before sunset. Just keep in mind that when flying due east (such as a flight from NY to Israel), you are flying in the opposite direction as the sun and the time for davening is compressed. While you may expect sof zman krias shema to be 1/4 of the way into the day, in this case the davening window is compressed into a much shorter time. The real complexity is in flights that cross the halachic dateline, polar flights and to a lesser degree, cross-Atlantic and Pacific flights. This article will not delve into the halacha of in-flight zmanim, but solely on the technical aspects of figuring out the zmanim times.

GPS

Using your phone’s GPS to identify your in-flight location, or even a standalone GPS device will usually not work once you are away from cell towers (where your GPS no longer has the assistance of A-GPS). GPS signals are very weak and your GPS receiver typically does not have an antenna strong enough to pick up the signals in an aluminum or even newer carbon fiber composite airplane like the Airbus A350 and Boeing 787. To receive a signal, an external GPS receiver is usually required and assuming that you can get a signal (it helps if the external receiver is placed by a window), we can proceed. Note that while you would expect that the CFRP body of a Boeing 787 would allow for a much stronger signal than aluminum airliners, the graphite (and probably other materials) in the 787 CFRP in conjunction with the electrochromic windows on the 787, completely block GPS signals. It is this shielding as opposed to GPS jamming that blocks signals on El-Al 787s. In my testing with an external GPS device designed for aviation such as the Dual XGPS 160, the composite A350 and 787 both do not allow enough GPS signal through for a GPS receiver to provide a location fix. It may be surprising that it is easier to receive the weak GPS signal in an aluminum fuselage than a composite one, but keep in mind that carbon fiber is an excellent electrical conductor. Carbon fiber was used as the filament in Thomas Edison’s early light bulbs and does not let RF signals through and effectively acts as a Faraday cage. If you are able to receive a GPS signal, you can accurately calculate zmanim for your current location using tools such as the KosherJava zmanim map. Just change the latitude and longitude to what you see in your GPS in the URL https://kosherjava.com/maps/zmanim3.html?lat=75.74&lng=-63.22&zoom=3. While not an ideal solution, it does work. The same works for the rare airlines whose maps do show accurate GPS coordinates. Please note that Wi-Fi based geolocation will not work on your flight (in my testing it gave the location of the service provider headquarters).

Precalculated Flight Paths

Another way to figure out where you are located when in the air is via a precalculated flight path. This allows programs such as the Chai Tables Chai Air Times program for Windows and Android to work. However, they just calculate a great circle route between the origination and destination locations, something that is not very accurate. Currently MyZmanim’s Inflight charts are the most practical. These charts calculate the average path of the 5 previous flights in an attempt to better estimate your flight path and provide precalculated charts based on the time you take off. While this solution is currently the best that I am aware of, there are a number of issues with it. For one, much of the flight path over the oceans and Arctic that are provided by services such as FlightAware and others (that are used by MyZmanim) are just educated guesses for cross oceanic or Polar flights, since there are no ADS-B receivers in much of this area. As a matter of fact, this terrestrial ADS-B receiver free area comprises 75% of the globe. Even if the previous flight paths were accurate, your current flight may be very different. Flights such as the Cathay Pacific flights from the NY area to Hong Kong fly either east or west depending on wind conditions. MyZmanim deals with this scenario by providing both east and west maps (based on the in-flight map you would use one or the other) and indicating the portion of a flight-path that is unknown, but this is a warning that does nothing to help you accurately calculate zmanim.

ADS-B Receivers

Every airliner broadcasts its position, heading, altitude and speed using ADS-B. A technical user can bring an ADS-B-receiver with him on the flight and use it to retrieve the current information on his flight. This would work even when there are no ground based ADS-B receivers. This is something costly and beyond the technical ability of the vast majority of flyers.

The future

Due to issues in tracking flights that came to light with the disappearance of Malaysia Airlines Flight 370, satellite based ADS-B tracking is rolling out and will be mandated. This will make it much easier for services such as MyZmanim to provide more accurate pre-flight estimates, since services such as Flight-Aware will be able to provide more exact historical flight paths. For users who do have in-flight Wi-Fi, services such as FlightAware will be able to provide almost real time location (note that many services have a 5 minute delay and are not really real-time), allowing future Wi-Fi connected zmanim apps to tap into this and provide accurate zmanim.

ZIP Codes and Zmanim – Use With Care

99557 ZIP code area (the largest in the USA)
99557 ZIP code area (the largest in the USA)
There are many zmanim services and apps that use ZIP codes as a location finder for calculating zmanim. While very convenient, there is a potential pitfall in using ZIP codes for geolocation. In general, ZIP code geolocation services will provide the center of the ZIP code and zmanim apps calculate zmanim for that location. The issue arises with large ZIP code areas mostly found in rural areas. Take the following two extreme cases that have very large ZIP code areas. ZIP code 89049 for rural Tonopah, NV, is 195 km (121 mi) from east to west. The eastern boundary of this non-contiguous ZIP code has a longitude of -115.417°, while the western boundary is -117.625°. This means that there are 2.2° of longitude between the eastern and western borders of this ZIP code. The earth rotates 1 degree every 4 minutes, so zmanim at the eastern and western edges of this ZIP code are approximately 8.8 minutes apart. Using the typical center of the ZIP based calculations would mean that zmanim would be about 4.4 minutes different at the edges compared to the center. Moving to something a bit more extreme, is the case of ZIP code 99557 of Aniak, Alaska and its surrounding area. This ZIP code is 415 km (258 mi) from east to west. The longitude of the eastern edge of the ZIP code is -153.032°, and the western edge is -160.783°. Being farther north and therefore having shorter distances between degrees of longitude, this ZIP code stretches across 7.7° of longitude. The zmanim difference from the center to the edges of this ZIP code is 15 and a half minutes (31 minutes across the ZIP). While it is indeed rare to have such large distances, there are 193 US ZIP codes that are over 1° of longitude wide, meaning that the zmanim difference for these ZIP codes are at a minimum 4 minutes apart, or 2 minutes off from the center. There are 1,463 or 4.4% of all ZIP codes with 0.5° or greater distance between east and west (a minimum of a 2 minute zmanim difference between the east and west zide of the ZIP code). zmanim software developers should be aware of this, and take care to alert users of possible inaccuracies when using large ZIP code areas, or require addresses or more specific location information for large zip codes.
Let’s contrast the above with Lakewood, NJ. With 0.107° of longitude from east to west, zmanim are 24 seconds later on the west side (the intersection of New Central Ave & N Hope Chapel Rd) than the east side (Shinn Cranes, 1600 Ocean Ave). New York City is larger, and from the western edge of Staten Island to the edge of Glen Oaks, the eastern edge of Queens there is a 2 minute and 11 second difference in zmanim.
See the Calculation of Zmanim VS Other Sites post for additional related material.
I thank Avraham David Gelbfish for generating the ZIP code longitude range for all 33,093 ZIP codes from the US Census Bureau ZIP code shape files.